You are here

Mathematics 230

<h3>Introduction to Ordinary&nbsp;Differential Equations</h3>

<p><strong>Credits:</strong> 3</p>

<p><strong>Length of Course:</strong> 14 weeks</p>

<p><strong>Classrom Hours per Week:</strong> 4&nbsp;</p>

<p><strong>Prerequisite</strong>: Mathematics 114, Mathematics 252 and 12 Credits</p>

<p><span style="line-height: 1.53em;"><strong>Text:</strong> <em>Notes on Diffy Os: Differential Equations for Engineers</em>. Jiri Lebl. Latest Ed.</span></p>

<hr />
<h3>Course Description:</h3>

<p>An elementary course in differential equations, introducing techniques for solving first, second, and higher order linear differential equations, systems of ordinary differential equations and Laplace Transforms.</p>

<hr />
<h3>Course Outline:</h3>

<table class="standard-table">
<tbody>
<tr>
<th class="width-fifth">Length</th>
<th>Description</th>
</tr>
<tr>
<td>
<p>Week 1</p>
</td>
<td>
<p>Introduction</p>
First order ODEs: Integrals as solutions, Slope fields, Separable equations</td>
</tr>
<tr>
<td>
<p>Week 2</p>
</td>
<td>First order ODEs: Linear equations and the integrating factor, Substitution</td>
</tr>
<tr>
<td>
<p>Week 3</p>
</td>
<td>First order ODEs: Autonomous equations, Numerical methods: Euler&rsquo;s method</td>
</tr>
<tr>
<td>
<p>Week 4</p>
</td>
<td>Higher order linear ODEs: Second order linear ODEs, Constant coefficient second order linear ODEs</td>
</tr>
<tr>
<td>
<p>Week 5</p>
</td>
<td>Higher order linear ODEs: Higher order linear ODEs, Mechanical vibrations</td>
</tr>
<tr>
<td>
<p>Week 6</p>
</td>
<td>Higher order linear ODEs: Nonhomogeneous equations</td>
</tr>
<tr>
<td>
<p>Week 7</p>
</td>
<td>Systems of ODEs: Introduction to systems of ODEs, Matrices and linear systems</td>
</tr>
<tr>
<td>
<p>Week 8</p>
</td>
<td>Systems of ODEs: Linear systems of ODEs , Eigenvalue method</td>
</tr>
<tr>
<td>
<p>Week 9</p>
</td>
<td>Systems of ODEs: Multiple eigenvalues, Matrix exponentials</td>
</tr>
<tr>
<td>
<p>Week 10</p>
</td>
<td>Systems of ODEs: Nonhomogeneous systems</td>
</tr>
<tr>
<td>
<p>Week 11</p>
</td>
<td>The Laplace transform: The transform, Transforms of derivatives and ODEs</td>
</tr>
<tr>
<td>
<p>Week 12</p>
</td>
<td>The Laplace transform: Convolution</td>
</tr>
<tr>
<td>
<p>Week 13</p>
</td>
<td>Review</td>
</tr>
<tr>
<td>
<p>Week 14</p>
</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

<hr />
<h3>Evaluation:</h3>

<table class="standard-table">
<tbody>
<tr>
<td>Quizzes and Homework</td>
<th>10-20%</th>
</tr>
<tr>
<td>Midterm Exam(s)</td>
<th>30-40%</th>
</tr>
<tr>
<td>Final Exam</td>
<th>50%</th>
</tr>
</tbody>
</table>

<hr />
<h3>Instructors</h3>

<p>Arman Ahmadieh B.Sc., M.Sc. (Sharif University of Technology)<br />
Hayri Ardal, B.Sc.(Bogazici), Ph.D.(Simon Fraser)<br />
Kim Peu Chew, B.Sc. (Nanjing), M.A., Ph.D. (British Columbia)<br />
Ana Culibrk, B.Sc.,M.Sc. (Belgrade),M.Sc.(British Columbia)<br />
Rika Dong, B.Sc. (Simon Fraser), M.Sc. (Regina)<br />
Sam Ekambaram, B.Sc., M.Sc. (Madras), M.Sc., Ph.D. (Simon Fraser)<br />
Himadri Ganguli, B.Sc., M.Sc. (Chennai), Ph.D. (Simon Fraser)<br />
Peter Hurthig, B.Sc., M.Sc. (British Columbia)</p>

<hr />
<h3>Transferability: see <a href="http://www.bctransferguide.ca">www.bctransferguide.ca</a></h3>